Trigonometry Summary
Everything You Need

When solving for sides or angles of a triangle, first decide whether you can use the easy steps.

1. Can you use “the sum of the angles in a triangle is 180°”
 Can you use properties of isosceles triangles?

If it’s a right triangle…

2. Can you use the Pythagorean theorem?
 Can you use SOH-CAH-TOA?

Example:

Calculating the missing angle \(\angle FED = 180 - (25 + 90) = 65° \) doesn’t require trig, but it is not necessary for finding \(\angle FE \).

SOH-CAH-TOA…

SOH-CAH-TOA can also be used to find the missing angle in a right triangle.

Example:
If it is not a right triangle, and you have the situation AAS, ASA or ASS…

3. Use the **Law of Sines**

Note: There must be a known side length opposite to a known angle measure.

![Diagram of triangle KMN with angles and sides labeled]

Example:

To find \(k \), use the measure of \(\angle K \)

\[
\frac{29}{\sin(66)} = \frac{k}{\sin(39)}
\]

\(k \sin(66) = 29 \sin(39) \)

\(k = \frac{29 \sin(39)}{\sin(66)} \)

\(k \approx 20.0 \text{ cm} \)

To find \(n \), first you need to find \(\angle N = 75^\circ \)

\[
\frac{29}{\sin(66)} = \frac{n}{\sin(75)}
\]

\(n \sin(66) = 29 \sin(75) \)

\(n = \frac{29 \sin(75)}{\sin(66)} \)

\(n \approx 30.7 \text{ cm} \)

The Sine Law can be used to find the missing angle too (in the case of ASS).

Example: Find the measure of angle \(V \)

![Diagram of triangle TSV with angles and sides labeled]

\[
\frac{47}{\sin(42)} = \frac{70}{\sin(V)}
\]

\(47 \sin(V) = 70 \sin(42) \)

\(\sin(V) = \frac{70 \sin(42)}{47} \)

\(V = \sin^{-1}\left(\frac{70 \sin(42)}{47}\right) \)

\(m\angle V = 85^\circ \)

The Ambiguous Case

Be careful… inverse sine will only return an acute angle (even if you know it’s supposed to be obtuse). If the angle is supposed to be obtuse, subtract from \(180^\circ \).
If it is not a right triangle, and you have the situation SAS, or SSS…

4. Use the Law of Cosines

Example:

To set up the formula, set it up like the Pythagorean theorem with \(g \) as the “pretend” hypotenuse and \(\angle G \) as the “pretend” right angle.

You can find a missing angle using the cosine law (you need to know all three sides).

Example:

When you have a choice of which angle to find first, always find the measure of the largest angle (opposite the longest side).

\[
25^2 = 9^2 + 19^2 - 2(9)(19)\cos(Q)
\]

\[
2(9)(19)\cos(Q) = 9^2 + 19^2 - 25^2
\]

\[
342\cos(Q) = -183
\]

\[
\cos(Q) = \frac{-183}{342}
\]

\[
Q = \cos^{-1}\left(\frac{-183}{342}\right)
\]

\[
Q = 122^\circ
\]